Эксплуатация нефтяных и газовых скважин

4.2. Приток жидкости к перфорированной скважине

При фильтрации жидкости, подчиняющейся линейному закону, приток жидкости к скважине можно выразить следующим образом:


, (4.1)

где Rф - фильтрационное сопротивление.

Приток жидкости к перфорированной скважине


(4.2)

будет отличаться тем, что вследствие сгущения линий тока у перфорационных отверстий возникнет дополнительное фильтрационное сопротивление Rдоп:


, (4.3)

где С - некоторая геометрическая характеристика.

Подставляя (4.3) в (4.2), получим


. (4.4)

Можно представить два крайних случая геометрической характеристики забоя.

1. Нет ни одного отверстия в обсадной колонне. Тогда, очевидно qп = 0, С = ∞.

2. Вся поверхность обсадной колонны в пределах толщины пласта покрыта перфорационными отверстиями. В этом случае сгущения линий тока не происходит и геометрия потока не будет отличаться от геометрии потока к забою скважины с открытым забоем. Очевидно, в этом случае С = 0.

Таким образом, величина С должна изменяться от 0 до ∞. С увеличением числа перфорационных отверстий n, их диаметра d, а также глубины L перфорационных каналов в породе пласта дополнительное фильтрационное сопротивление Rдоп должно уменьшаться, а следовательно, должно уменьшаться С. Таким образом,


. (4.5)

Задача о притоке жидкости к перфорированной скважине была решена методом электрогидродинамических аналогий (ЭГДА), основанном на тождественности уравнений фильтрации и распространения электрического тока в геометрически подобных системах. Отношение дебита перфорированной скважины к дебиту скважины с открытым забоем, принятой за эталон, при прочих равных условиях принято называть коэффициентом гидродинамического совершенства


. (4.6)

Подставляя вместо qп его значение из (4.4) и вместо q - из (4.1) и сокращая, найдем


. (4.7)

В методе ЭГДА в геометрически подобных системах токи являются аналогом расходов фильтрующейся жидкости, напряжения перепадов давлений и омические сопротивления - фильтрационных сопротивлений.

Используя гладкий цилиндрический электрод в качестве электрической модели скважины с открытым забоем и цилиндр из изоляционного материала с вмонтированными электродами в качестве модели перфорированной скважины, сравнивают протекающие через них токи при последовательном помещении этих моделей в токопроводящую среду (электролит) геометрически подобную пластовой системе и определяют коэффициент совершенства системы η и, используя (4.7), находят С (рис. 4.2).


Рис. 4.2. Зависимость C = f(nD, а, l) при l = 0:

n - плотность перфорации; D - диаметр скважин, d' - диаметр отверстий; l' - глубина

перфорационных отверстий; l = l' / D, α = d' / D. 1 - а = 0,02; 2 - oc = 0,04; 3 - a = 0,06;

4 - a = 0,08; 5 - a = 0,l; 6 - a = 0,12; 7 - a = 0,14; 8 - a = 0,16; 9 - oc = 0,18; 10 - a = 0,2

Меняя число электродов n, их диаметр d и длину L, можно установить зависимость C = f{n, d, L).

Несовершенные скважины бывают трех видов: скважина с открытым забоем, частично вскрывающая пласт на величину b (рис. 4.3, а) - несовершенная скважина по степени вскрытия - δ = b/h; скважина с перфорированным забоем и вскрывающая пласт на полную толщину (рис. 4.3, б) - несовершенная скважина по характеру вскрытия; скважина, перфорированная не на всю толщину пласта и вскрывающая его частично (рис. 4.3, в) - несовершенная по степени и характеру вскрытня (двойной вид несовершенства).


Рис. 4.3. Виды несовершенных скважин:

а - скважина, несовершенная по степени вскрытия; б - скважина, несовершенная по характеру