Эксплуатация нефтяных и газовых скважин

12.2. Подача ГПН и рабочее давление

Рассмотрим работу ГПН двойного действия, так как такие агрегаты являются наиболее современными. Обозначим: Рн - площадь поршня насоса, откачивающего пластовую жидкость; f - площадь сечения штока; S - ход поршня; n - число двойных ходов в минуту.

Подача насоса при ходе вниз


,

при ходе вверх


.

Подача за один двойной ход


.

Подача за n ходов будет в n раз больше, а в сутки в 24 x 60 = 1440 раз больше. Таким образом, теоретическая подача насоса в сутки будет равна


, (12.1)

Вводя коэффициент подачи α, учитывающий различные потери (утечки через неплотности, незаполнение цилиндра из-за влияния газа, усадку нефти и др.), можно определить фактическую подачу ГПН двойного действия


. (12.2)

По аналогии с (12.2) можно определить расход рабочей жидкости гидравлического двигателя двойного действия ГПН


. (12.3)

где Fд - площадь поршня двигателя; αз - коэффициент, учитывающий утечки рабочей жидкости в зазоре между цилиндром и поршнем, в клапанах, протечки жидкости в золотниковом устройстве и в муфтовых соединениях НКТ.

Силовой насос на поверхности должен обеспечить подачу Qр. Если силовой насос будет иметь подачу меньшую, то в соответствии с ней изменится и число ходов ГПН.

Поэтому, регулируя подачу силовою насоса на поверхности, можно изменить число ходов ГПН, а следовательно, и подачу всей установки. Изменение подачи силового насоса возможно только заменой плунжеров и втулок насоса, а также путем сбрасывания части рабочей жидкости из нагнетательного трубопровода назад в приемную часть насоса, т. е. дросселированием жидкости. Однако такой метод регулировки снижает к. п. д. установки.

Рабочее давление, развиваемое силовым насосом, обычно велико и составляет 10,0 МПа и более. Это давление определяется соотношением площадей поршней в двигателе ГПН и самом насосе, а также гидравлическими сопротивлениями в колонне НКТ и кольцевом пространстве. Определим рабочее давление силового насоса на устье скважины для ГПН двойного действия (рис. 12.5).


Рис. 12.5. Схема распределения давлений и действия сил в ГПН при ходе вниз

Сила Rд, действующая сверху на поршень гидравлического двигателя, при его ходе вниз должна уравновешиваться силой Rн, действующей на поршень насоса снизу, и силами трения r, возникающими в сальниках и на уплотнительных поверхностях при движении всей поршневой системы:


. (12.4)

Но сила Rд - равнодействующая от силы R'д, действующей на поршень сверху, и силы R"д, действующей на поршень снизу в цилиндре двигателя ГПН, так что


. (12.5)

Обозначим: f1 - верхняя площадь поршня двигателя; f2 - нижняя площадь поршня двигателя, равная верхней за вычетом площади сечения штока; P1 - давление рабочей жидкости в полости над поршнем; P2 - давление отработанной жидкости в полости под поршнем.

Тогда


, (12.6)


, (12.7)

Давление рабочей жидкости в цилиндре двигателя P1 (см. рис. 12.5) складывается из давления нагнетания рабочей жидкости на устье Pн, гидростатического давления столба рабочей жидкости в колонне НКТ от устья до глубины подвески ГПН Р'г, потерь давления на трение жидкости в НКТ Рт и потерь давления на трение рабочей жидкости в подводящих каналах и золотниковом устройстве двигателя n. Потери на трение Pт и n, очевидно, надо взять со знаком минус. Итак,


. (12.8)

Давление отработанной жидкости под поршнем двигателя сложится из давления в выкидной линии на устье скважины Pу, гидростатического давления столба жидкости в кольцевом пространстве P"г, которая может иметь плотность, отличную от плотности рабочей жидкости, и поэтому, вообще говоря P'г ≠