Эксплуатация нефтяных и газовых скважин

При таких условиях эксперимента растворимость газа в нефти не могла быть учтена. Из формулы (8.33) следует, что, формулируя условия фонтанирования (8.29), необходимо определить действительное количество газа, которое находится в свободном состоянии в фонтанном подъемнике при среднем давлении в подъемнике. В качестве среднего давления можно принять (следуя А. П. Крылову) среднее арифметическое, т. е.


. (8.34)

Среднее количество свободного газа определяется как разность полного газового фактора Го и количества растворенного газа, которое определяется как произведение коэффнциента растворимости α на Pср, взятое в избыточных единицах давления,


. (8.35)

Далее необходимо учесть, что вода, сопровождающая нефть, практически не содержит растворенного газа и замеряемый на промыслах газовый фактор Го относят к чистой необводненной нефти. Поэтому газ, выделяющийся из нефти, расходуется и на подъем воды. Если n - обводненность - доля воды в поднимаемой жидкости, то газовый фактор, отнесенный к 1 м3 жидкости, будет равен Гср ·(1 - n).

Таким образом, газовый фактор, определяющий количество кубических метров газа при стандартных условиях, находящегося в свободном состоянии при среднем давлении в подъемнике, и отнесенное к 1 м3 жидкости (обводненной нефти) и будет тем газовым фактором, который можно приравнять к величине Rопт. Этот газовый фактор называется эффективным газовым фактором и обозначается Гэф. Поэтому с учетом растворимости газа условие фонтанирования теперь запишется так:


, (8.36)

или в развернутом виде


. (8.37)

Из неравенства (8.37) можно определить минимально необходимое давление на забое Рс, обеспечивающее фонтанирование при заданной комбинации других величин, таких как Го, d, L, Ру, Р. Для определения минимального Рс необходимо решить неравенство (8.37) относительно Рс. Однако сделать это нельзя, так как выражение (8.37) относительно Рс трансцендентно. Поэтому решение неравенства (8.37) получается либо подбором такой величины Рс , которая обращает неравенство (8.37) в тождество, либо графоаналитическим путем.


Рис. 8.3. Графоаналитическое решение уравнения при определении минимального

давления фонтанирования при разных обводненностях продукции скважин

На рис. 8.3 показаны эти графические построения. Точка А пересечения этих двух линий (1 и 2), соответствующих левой н правой частям (8.37), дает значение, при котором правая и левая части (8.37) равны. Это будет искомое минимальное давление на забое скважины, обеспечивающее процесс фонтанирования при заданных условиях. При увеличении обводненности n эффективный газовый фактор Гэф пропорционально уменьшается, а оптимальный удельный расход газа Rопт несколько увеличивается за счет увеличения плотности водонефтяной смеси. Поэтому точка пересечения линий Гэф(Pс) и Rопт(Pс) для нового, увеличенного значения n переместится вправо (точка В). Таким образом, при увеличении обводненности минимально необходимое для фонтанирования давление на забое скважины увеличивается. Так можно рассчитать минимальные давления фонтанирования для разных обводненностей n и получить новую зависимость Pс(n) для прогнозирования возможностей фонтанного способа добычи. Область значений Pс , превышающих минимальное давление фонтанирования, - это область, в которой выделяющееся в скважине количество газа Гэф больше минимально необходимого Rопт . На рис. 8.3 эта область заштрихована. Влево от точки В (или соответственно от точки A при меньшей обводненности n) лежит область значений Pс , при которых фонтанирование невозможно, так как поступающее в скважину количество газа Гэф < Rопт .




Следует заказать печать листовок а4 с дизайнерским оформлением.