Эксплуатация нефтяных и газовых скважин

7.3. Плотность газожидкостной смеси

Через данное сечение трубы при движении по ней ГЖС проходит некоторое количество газа и жидкости. Можно представить, что все газовые пузырьки занимают в сечении трубы суммарную площадь fг, а жидкость - остающуюся площадь в том же сечении fж, так что


,

где f - площадь сечения трубы (рис. 7.8). Плотность ГЖС в таком случае определится как средневзвешенная


, (7.18)

где ρж и ρг - плотность жидкости и газа при термодинамических условиях сечения.

Обычно fг / f обозначают через φ. Тогда fж / f = 1 - φ,


. (7.19)

Величина φ = fг / f называется истинным газосодержанием потока.

Обозначим V - объемный расход газа через данное сечение; q - объемный расход жидкости через то же сечение; Сг - линейная скорость движения газа относительно стенки трубы; Сж - линейная скорость движения жидкости относительно стенки трубы.

Тогда можно записать следующие соотношения:


. (7.20)

и


. (7.21)

Подставляя (7.20) и (7.21) в (7.18) и делая некоторые сокращения, получим


, (7.22)

В восходящем потоке газ движется быстрее жидкости, так как на него действует архимедова сила выталкивания. Обозначим


Рис. 7.8. Среднестатистические площади в трубе, занятые газом и жидкостью


, (7.23)


. (7.24)

Разделив числитель и знаменатель в (7.22) на q и вводя новые обозначения согласно (7.23) и (7.24), получим


, (7.25)

где r - газовый фактор, приведенный к термодинамическим условиям рассматриваемого сечения.

При Сг = Сж b = 1 и из (7.25) следует


. (7.26)

Этот случай соответствует идеальным условиям, при которых образуется идеальная смесь плотностью ρи. Относительная скорость газа (по отношению к жидкости)


, (7.27)

или


. (7.28)

Подставляя (7.28) в (7.23), получим


, (7.29)

Поскольку а > 0, то b > 1. Увеличение скорости газа при неизменном объемном расходе V уменьшает fг, следовательно, увеличивает fж. В результате плотность смеси, как это следует из (7.18) и (7.19), увеличивается. Таким образом, явление скольжения газа (a > 0) при неизменных объемных расходах q и V приводит к утяжелению смеси по сравнению с идеальным случаем. Поэтому чем больше а, тем больше потребуется давление на забое для поднятия данного количества жидкости.

Плотность реальной смеси


, (7.30)

где Δρ - увеличение плотности смеси, обусловленное скольжением. Для определения Δρ к (7.25) прибавим и отнимем ρи согласно (7.26), получим


Группируя слагаемые и делая некоторые преобразования, имеем


или после приведения к общему знаменателю в квадратных скобках и группировки слагаемых найдем


. (7.31)

Из сопоставления (7.31), (7.30) и (7.26) следует


. (7.32)

При b = 1 (отсутствие скольжения газа Сг = Сж) числитель в (7.32) обращается в нуль и Δρ = 0. Утяжеление ГЖС не происходит. С увеличением b (b > 1) Δρ монотонно увеличивается (рис. 7.9). Заштрихованная часть графика показывает увеличение плотности ГЖС за счет скольжения газа.

Из формулы (7.29) видно, что при одной и той же относительной скорости газа (a = const) b уменьшается при увеличении Сж, т. е. расхода жидкости. Отсюда следует важный для практики вывод - переход на трубы малого диаметра при определенных условиях за счет увеличения Сж уменьшит величину b, а это в свою очередь повлечет уменьшение Δρ.


Pиc. 7.9. Изменение плотности ГЖС в результате скольжения газа

Поэтому подъем ГЖС может быть осуществлен при меньшем давлении в нижней части трубы (при меньшем забойном давлении). Однако целесообразность перехода на трубы меньшего диаметра должна быть проверена расчетом, так как при этом возрастут потери давления на трение.